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Abstract. Approaches to models and computer simulations of conductivity, polarization resistance, and

impedance of composite electrodes in solid oxide fuel cells (SOFC) are reviewed with respect to the more

important experimental ®ndings. The approaches are classi®ed according to how they model the highly disordered

structure of composite SOFC electrodes: As corrugated layers of electrode material covered by a thin ®lm of

electrolyte or vice versa (thin ®lm model), as a random packing of particles (Monte Carlo calculations), or using a

macroscopic, averaged description of the disordered electrode structure (macroscopic porous-electrode model).

Thin ®lm models appear to be useful rationalizations of some experimental measurements of polarization

resistance, but in the stricter sense fail to predict a number of important electrode characteristics. The Monte Carlo

method, on the other hand, apparently meets with most of the more prominent experimental results reported so far,

although some issues concerning parameter choices, among other things, remain to be resolved. The macroscopic

porous-electrode theory may serve as a useful simpli®cation of the Monte Carlo method, but with a more limited

scope.

Modeling of composite electrodes for SOFC thus appears to have reached a level where it can be used for

practical engineering applications. As an example of this, the rate of methane reforming at Ni-YSZ cermet anodes

under current load is calculated using the framework of the macroscopic porous-electrode theory, modi®ed to

include non-linear kinetics and gas-phase diffusion. The reforming reaction is quite evenly distributed in the anode,

and its overall rate is therefore strongly dependent on thickness. However, most of the electrochemical reaction is

likely to occur in a region closer than 10 mm to the bulk electrolyte. For an anode thickness larger than this, the

current-collector potential at a given current is by and large independent of thickness. The ratio between the rates of

the reforming and the electrochemical reactions can therefore be balanced to a certain degree by optimizing

thickness, without signi®cant loss in cell power. In addition, cermet porosity, volume fraction of Ni and Ni-particle

size, appears to have a moderate effect in controlling the rate balance, which will have to be manipulated within the

constraints set by the requirement of percolation in the gas-phase and the Ni- and YSZ-networks.
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Introduction

Fuel cells are ef®cient electrochemical converters of

the availability of fuels directly to electrical energy

without the use of equipment like steam generators,

turbines and generators [1]. In a fuel cell, fuel and

oxidant are separated by an electrolyte through which

a current ¯ows during oxidation of the fuel. Fuel cells

are usually classi®ed according to their operation

temperature and the type of electrolyte employed. For

example, the solid oxide fuel cell (SOFC) consists of a

solid (usually) oxygen-conducting electrolyte sand-

wiched between electronically conducting anode and

cathode layers, and operates at 800±1000�C [2,3].

Thermodynamically (among other things) there is an

incentive to operate fuel cells at temperatures as low

as possible. On the other hand, irreversible losses

associated with current conduction and the electro-

chemical processes ( polarization losses) dictates the

temperature to be as high as possible. The resolution

of this con¯ict is typically pursued by improving the

electrical and electrochemical properties of cell



materials enough to operate the cell even at reduced

temperatures without unacceptable polarization and

ohmic losses. In state-of-the-art SOFC, composition-

ally uniform materials like yttria-stabilized zirconia

(YSZ) and perovskite-type oxides like La1ÿxSrxMnO3

(LSM) are popular candidates for ef®cient electrolytes

and cathodes, respectively [2,3]. For the anode,

composites like Ni-YSZ cermets are usually chosen

[2±16]. To allow for the species taking part in the

electrochemical reactions to meet (i.e., electrons,

electrolyte ions, and gas molecules), both the anode

and cathode are usually porous.

The principal arguments for using composites at

the anode side, were initially associated with stability

and thermo-mechanical compatibility with the elec-

trolyte [2]. However, in recent years the view that

there may also be signi®cant reduction and polariza-

tion losses by extension of the reaction zone for

the electrochemical reaction is gaining widespread

support [3,7,9,11,12,17±19]. As a consequence,

composite cathodes (e.g., YSZ-LSM [20]) are also

emerging as an attractive alternative to e.g., LSM.

However, to keep losses at minimum, judicious design

of the electrodes in terms of composite topology,

morphology and composition is needed.

Computer models for composite electrodes for

SOFCs may prove invaluable both in terms of

understanding basic phenomena and ultimately for

the quantitative design and optimization process

itself. Depending on their mode of application, these

models will need to meet certain validation criteria.

First, they should reproduce as many of the salient

characteristics of composite electrodes as possible,

and with as high a degree of accuracy as possible.

However, simpli®ed models not in compliance with

all experimental ®ndings may in some cases still

prove useful, provided that the limitations of the

model are easily inferred from the assumptions made.

Secondly, the model should be reasonably general,

and preferably provide relations between microscopic

parameters and macroscopic properties of the

composite electrode. Of special interest in this context

are relations between conductivity and polarization

resistance on one hand, and porosity, morphology and

structure on the other. Finally, simplicity of imple-

mentation and adaptability are considered valuable

assets.

The purpose of this paper is to review some of the

attempts to formulate a modeling framework for

composite electrodes in SOFCs. We will evaluate

these attempts with respect to the criteria advocated

above. In view of the ®rst of these, we will need to

review what the salient experimental characteristics

of composite electrodes are. This will be done in the

section immediate to this one. As will become

apparent from what follows below, the modeling

process can be conceptually broken into the three

tasks of (i) choosing a model structure for the

composite, (ii) setting up current balances, and (iii)

solving the resulting equations. We will base the

classi®cation of models here on the type of structure

chosen, and in what follows after the next section

describe thin-®lm models [17,18,21], models based on

random packing of particles [19,22±24], and macro-

scopic porous-electrode theories [23,25,26] and in this

sequence. (The nomenclature used here is in part our

own, and not necessarily identical to that chosen by

the authors of the papers quoted.) As it is our aim to

show that modeling of composite SOFC electrodes

have reached a level at which the use of these models

in quantitative design applications may emerge as

useful, we conclude this paper by applying the theory

to judge the possibilities of steam-reforming methane

internally in an SOFC.

Salient Experimental Features of Composite
Electrodes for SOFC

We consider here composites consisting of a

predominantly ionically conducting material (electro-

lyte material) and a predominantly electronically

conducting material (electrode material), as most

composites associated with SOFCs are of this type.

Some important phenomena observed with such

composite electrodes in SOFC and which have

strong bearings on the optimum design of these are:

I. an apparently completely disordered structure,

made up of particles of the electrode and

electrolyte material uniform in extension and

mixed at random [4±6,8,11,13,14,17,27±31]

II. a porosity often in the order of 30% (with some

variations) [4,15]

III. an abrupt increase in conductivity with volume

fraction F of the electrode material at a certain

critical fraction Fc [2,4,15]

IV. a decrease in Fc with increasing ratio between

electrolyte-particle radius ael and electrode-

particle radius aed [8]
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V. a more or less abrupt decrease in conductivity

with coarsening of the electrode particles [13]

VI. a relatively broad minimum in polarization

resistance at intermediate F [5]. For

aed=ael � 1 the minimum often occurs around

F � 0:4±0:5 [32]

VII. a (strong) dependence of the minimum polar-

ization resistance of aed=ael [5b,16,32]

VIII. an increase in F at which the polarization

resistance is minimum with decreasing ael=aed

[5]

IX. structure-dependent impedance spectra

[6,9,11,12,32]. Also, in some cases impedance

spectra change shape as a function of tempera-

ture: the higher the temperature, the more

features become apparent in the spectra [20]

X. a marked thickness dependence of the polariza-

tion resistance at intermediate F; the larger the

thickness the lower the polarization resistance,

reaching an asymptotic limit at large thickness

[17,18]

XI. at high values of F, the polarization resistance

is thickness-independent [17].

Many of the ®ndings on this list may be related solely

to the topological arrangement of electrode and

electrolyte clusters within the composite. Although

these observations are reasonably clear-cut, many

others made on composite SOFC electrodes show less

convergence. These discrepancies may, in turn, be

explained by differences in structure. Thus, it appears

that models that take into account the effect of particle

connectivity might be particularly useful in eluci-

dating the properties of composite electrodes for

SOFC. Nevertheless, the thin-®lm model described

next demonstrate that a certain degree of insight can

be obtained by simply making assumptions about this

connectivity.

Thin-Film Models

The thin-®lm model is a model for polarization losses,

and in some versions of the model also ohmic losses,

in composite electrodes based on the assumption that

all three phases of the electrode, i.e., electrolyte,

electrode, and gas phases, form contiguous paths from

bulk electrolyte to current collector. In the work of

[17,18], the pores are modeled as straight channels of

radius r in an electrode material. The channel surfaces

are covered by a thin ®lm of electrolyte material, and

the model thus represents the very disordered

structure of real electrodes (experimental observation

I) by a very ordered structure. A current balance on

this geometry is then performed, assuming linear

electrochemical kinetics, which amounts to a one-

dimensional differential current balance along the

pores. Solution of the resulting pair of ®rst-order

differential equations yields for the polarization

resistance Rp of the electrode

Rp �
������
rki

p
coth

�������������
rL2=ki

p
�1�

where r is the (empirical) resistivity of the electrolyte

layer, ki is equal to the product of an interfacial

resistance k0i and r/2 (to be obtained by ®tting to

experimental data), and L is the thickness of the

electrode.

Instead of modeling the electrolyte as a the thin

®lm, one may choose to treat the electrode material as

the thin ®lm, covering the surfaces of straight

channels in the electrolyte material (connected to

the bulk electrolyte) [21]. Also, the model can easily

be extended to more than one dimension, and by

adding thin ®lm material to surfaces other than the

pore walls, e.g., at the pore bottom for the case of the

electrode material playing the role of a thin ®lm [21].

The most important difference between these latter

approaches and the original model proposed by Kenjo

et al. [17] is that adding electrode material to pore

bottoms causes Rp to remain ®nite as electrode

thickness approaches zero (Eq. (1) diverges as

L?0). (Other, less important differences are dis-

cussed in Tanner et al. [21]. Note, however, that

Eq. (1) is not correctly reproduced in this reference.)

Due to the assumption of straight, connected

strands of electrolyte and electrode material, the

thin-®lm model is basically concerned with the

current distribution in the electrode and does not

address aspects of connectivity as such. Therefore, the

model does not make predictions of phenomena

obviously related to connectivity and particle size,

such as observations III, IV, V, VI, VII, and VIII on

the above list. Concerning observation XI, an apparent

thickness independence of Rp may in general be

caused either by the interfacial current being

concentrated so closely to the composite's interface

to the bulk electrolyte that Rp appears as thickness

independent (L2 4 ki=r in Eq. (1)), or by breakdown

of connectivity in either the electrode or electrolyte

phases (see discussion below). The thin-®lm model

Simulations of Composite Electrodes in Fuel Cells 155



recognizes only current-distribution effects as causes

for thickness-independence, and then only a poster-
iori. Also, some of the important parameters entering

the model can not be easily related to independent

measurements, notably for the interfacial resistance

k0i, and serve as empirical parameters to be obtained by

®tting. In spite of these shortcomings, the thin ®lm

model represents a useful conceptual framework for

discussing (laterally averaged) current distributions in

composite-fuel cell electrodes.

Although not explicitly making the assumption of

straight pores and thin-®lms of electrolyte or electrode

phases, the transmission line model of Kawada et al.

[7] resembles the thin-®lm model of Kenjo et al. [17]

in that it is a one-dimensional current balance based

on the assumption of electrolyte and electrode particle

connectivity. However, Kawada et al. [7] relaxes the

approximation of linear electrochemical kinetics, and

calculates non-linear current versus overpotential

relationships, focusing on the effects of grain-

boundary resistance in electrolyte particles. The

(linear) impedance of the electrodes is also calculated,

showing a strong dependence on the ratio between

bulk and grain-boundary resistance of electrolyte

particles. No extensive comparison with experimental

results is presented in the paper, but as this approach is

essentially the same as that of the thin-®lm model, so

will its de®ciencies be.

Models Based on Random Packing of Particles

The basic assumptions behind models based on

random packing of particles are (1) that the composite

electrode can be represented by discrete particles of

electrolyte and electrode material packed together

completely at random (experimental observation I),

(2) that current is conducted from particle to particle

through necks formed between them, and (3) that

representative aggregates can be created on a

computer either by serial, random deposition of

spheres, leading to highly amorphous structures, or

by regular lattices of a chosen structure, e.g., cubic

[19,22±24] (see also e.g., [33±35]). Due to the

randomness of this approach, the method is also

frequently referred to as the Monte Carlo method [36].

The lattices are stored on the computer as lists of

particle coordinates and their corresponding radius

and type. Necks are created by allowing the radii of

the spheres to increase in unison, removing over-

lapping material, until the desired porosity is obtained

(experimental observation II) [22]. For example, for a

cubic lattice of spheres, the porosity is 1ÿ p=6. If one

assumes all necks between particles i and j to be of the

same circumference lij � l, and the particle radii are

ap, the porosity is

e � 1ÿ 4

3
pG3 ÿ p�Gÿ ap� 3

l

2p

� �2

��Gÿ ap�2
" #( )

=�8ap
3� �2�

where G � ap= cos�tanÿ1�l=2pap��. The particle

radius ap is here de®ned as the shortest distance

from the particle center to the neck plane. Thus, if

1 � 3 mm and ap � 1 mm, the porosity is 31.7%

according to this model (c.f. experimental observation

II). For lattices with varying lij or for which the

coordination number is different from that of cubic

lattices (six), more complicated formulas will result,

depending on the additional assumptions necessary in

these cases.

Usually the particle packings are created in the

form of sheets containing some thousands of particles,

but even relatively small lattices (# particles * 1000)

can yield physically relevant information. Cyclic

boundary conditions assure effectively in®nite exten-

sion in the lateral directions [19,22±24]. Once the

lattice has been generated, a list of neighboring

particles is easily made from the list of particle

coordinates and size [19,22±24].

In order to calculate the desired electrical and

electrochemical properties of the electrodes, the

Kirchhoff current law is now applied to every

neighboring pair of particles on the list. Thus, for

site i we have [19,22±24,35,36]

Ii �
X

j

Iij �
X

j

�Vj ÿ Vi�sij �3�

where Ii is the sum of currents Iij going into lattice site

i (zero for all internal sites in the composite), Vi and Vj

the voltages at site i and j, respectively, and sij the

bond conductance between sites i and j. These

quantities may in principle be real or complex, and

time-dependent or not. Applying Eq. (3) to all sites in

the lattice and with appropriate boundary conditions,

yields a set of ®nite difference equations, for which

ef®cient numerical methods of solution exist. The

only thing that remains in order to relate the

calculations to microscopic quantities, is the calcula-
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tion of the bond conductances. The following

approximation for a bond between two particles of

the same material can be used [22±24,37]

sij � kilij=4 �4�
whereas for two dissimilar particles,

seled � �2sed�ÿ1 � �2sel�ÿ1 � sÿ1
p

h iÿ1

�5�

is used [19,22±24]. Here, ki is the bulk conductivity of

the electrode or electrolyte material, depending on

whether Eq. (4) is applied to an electrode-electrode

contact, or to an electrolyte-electrolyte contact,

respectively. sed is an electrode bond-conductance

according to Eq. (4). sel is an electrolyte bond-

conductance according to Eq. (4). sp is a polarization

conductance, and is often measured and quoted with

respect to the length of the so-called three-phase

boundary �lTPB�, which is nothing but the length of the

circumference of the electrode-electrolyte particle

contact in the present model, [19,22±24,38] and

references therein and the application section below.

Again, all these quantities may be real, complex, and

time dependent or not. The length of the neck

circumferences needed in Eq. (4), can be estimated

via Eq. (2) (or possibly its equivalents for other types

of lattices) using some typical value for the electrode

porosity.

Conductivity is usually measured at high frequen-

cies to short capacitances contained in sp. For

calculation of conductivity of the composite, there-

fore, �sp�ÿ1
is set to zero in Eq. (5) [19,22±24].

Polarization resistance is normally de®ned as the

difference between the high- and low-frequency

resistances of the electrode. Thus, for the evaluation

of the polarization resistance of the composite, an

additional calculation is needed, for which the low-

frequency (constant) limit of sp is used. The

polarization resistance is then calculated as the

difference between the two. For intermediate fre-

quencies, the electrode impedance is calculated using

the frequency-dependent, complex expression for sp,

and possibly also sed and sel [24].

The merits of the random-packing model are

illustrated in Fig. 1, in which conductivity v. volume

fraction F of Ni in a 20 mm thick YSZ-Ni cermet as

calculated from the random-packing model. All

particle radii are 1 mm. The conductivity k has been

normalized with respect to that of Ni�ked� at a

temperature of 1000�C, and all other temperature-

dependent parameters are those expected to be the

most relevant for this temperature. Included in the

®gure are also three sets of experimental data from

Dees et al. [4] and Ivers-Tiffe et al. [15]. Taking the

scatter of the experimental results into account, the

random-packing model appears to compare well with

the measured values. In particular, the model predicts

the large jump in conductivity at F& 0.3 (experi-

mental observation III).

Calculated polarization resistance Rp is shown in

Fig. 2 for values believed to be typical for Ni-YSZ

cermets (at 1000�C). Experimental results have not

been included, since these tend to vary widely in

magnitude. Nevertheless, the shape of the Rp versus F
curve is similar to those obtained in experiments

(experimental observation VI) [5]. The absolute

magnitude of Rp is in reasonable agreement with the

lowest values reported, but there is some uncertainty

concerning the best combinations of sp and electrode-

electrolyte circumference ledÿel�� lTBP� to be used.

(For a closer discussion of this point, see Mogensen et

al. [38] and Sunde [23].) In this context we note an

alternative approach to the above one for representing

porosity in composites, given by Abel et al. [39]. In

their work, Abel et al. [39] randomly assigns a number

of positions (corresponding to the desired porosity) in

face-centered cubic lattices to voids. Only electrolyte-

electrode contacts surrounded by a suf®cient number

of connected voids and where both particles are

connected to their corresponding bulk phases are

electrochemically active. All other electrolyte-elec-

trode contacts are assigned an in®nite resistance, as

are all void-particle resistances. This approach

inevitably leads to a smaller number of three-phase

boundaries in the composite, which might explain any

problem of too small polarisations resistances.

However, as Abel et al. [39] unfortunately put little

emphasis on comparison with experimental data, a

ranking of this approach in terms of the criteria set

forth in the introduction above is dif®cult.

Nevertheless, we note that the percolation threshold

of fcc lattices (& 0.2) may appear a bit low in

comparison with most experimental results for

composites of (approximately) uniform particle size,

c.f. Fig. 1.

For conductivity and polarization resistance, the

random packing model also survives comparison with

experimental observations IV, V, VIII, X and XI given

in the summary above. Of special importance is the

fact that the model can predict the drop in
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Fig. 1. Dimensionless conductivity k=ked as a function of volume fraction F of Ni in Ni-YSZ cermets calculated by the random packing

method with lTPB � 3 mm (j) and lTPB � 0:3 mm (h). The thickness is 20 mm, all particle radii are 1mm, all neck circumferences between

electrode particles and between electrolyte particles are 3mm, and the conductivity of Ni and ZYSZ are 2 104 S/cm and 0.1 S/cm,

respectively. Experimental data from Ivers-Tiffee et al. (50% porosity data, d) and Dees et al. (Zircar YSZ: m , Toyo YSZ: r) are

included.

Fig. 2. Polarization resistance Rp as a function of volume fraction F of Ni in Ni-YSZ cermets calculated by the random packing method

with lTPB � 3 mm, sp � 10ÿ4 S/cm, and all other parameters as in Fig. 1.
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conductivity with Ni-particle aggregation in Ni-YSZ

cermets (experimental observation V [13]). The

model offers the explanation that this drop in

conductivity is due to the increase in percolation

threshold with increasing ratio between Ni and YSZ

radii, thus pushing the conductivity ``over the edge''

[22]. Actually, this interpretation can be made on the

basis of experimental observation IV alone, but was

apparently ®rst made in the context of the random-

packing model. In addition, the temperature depen-

dence of the conductivity of Ni-YSZ cermets

calculated by the random-packing model is in

quantitative agreement with experimental results [4].

Finally, the thickness dependence of Rp is also in

accord with experimental results, and is qualitatively

similar to that predicted by Eq. (1) above as long as

the volume fraction of electrode particles is larger

than Fc and the volume fraction of electrolyte

particles is larger than their percolation threshold

[23]. Outside this regime, there will be no thickness-

dependence of RP whatsoever the values of the other

parameters of the model [23]. This is in contrast with

Eq. (1), which can only explain an apparent absence

of thickness dependence of Rp as due to a current

distribution effect, i.e., as a trade-off between ohmic

and polarization losses. The random packing

approach, on the other hand, predicts that in addition

to this trade-off effect the absence of thickness

dependence can be caused by the absence of electrode

or electrolyte clusters that has rami®cations from one

side of the electrode to the other, in accord with

simple intuition.

The thickness dependence of Rp is discussed at

length in Sunde [23], which also presents a ``phase

diagram'' for which F regimes where a thickness

dependence is possible or not as a function of

a � ael=aed , see also Costamagna et al. [25]. (The

reader may at this point want to note the unjusti®ed

claim made in Tanner et al. [21] about the Monte

Carlo method that the thickness dependence of Rp is

solely a ``statistical effect''. Also, note that in Sunde

[23] the data by Kenjo et al. are quoted to display ``no

thickness dependence for low F'', whereas it should

read ``high F''. This is, however, of no consequence

for the conclusions in that paper, since the thickness

independence is predicted both for low and high

values of F.)

Concerning experimental observation VII, mea-

surements carried out in different laboratories are

strongly diverging [5,16], and a comparison with

calculations is not easy. Also, these measurements

were carried out for much larger ratios of ael=aed than

has hitherto been simulated. In addition, the

calculated results would depend very much on the

choice of the neck widths in the composite. A

shallow minimum in Rp at ael=aed � 1 may be

noticed for the parameters used in the calculations

in Sunde [23], c.f. also Lee et al. [32], but no

unequivocal conclusion can be made for the present

concerning this point.

The impedance of random-packing models for

composite electrodes has been treated extensively by

Sunde [24], using a generic model for a three-step

reaction as the interfacial impedance between elec-

trode and electrolyte particles. An interfacial

capacitance was also included for the complex version

of sp. (The modulus of this impedance increases with

decreasing frequencies, and, depending on the

parameters, gives rise to one or more semicircles

when plotted in an impedance-plane plot.) The basic

result of these calculations is that the appearance of

impedance-plane plots of the composite can be

signi®cantly different from those of the interfacial

impedance alone. At the low frequency end of the

spectrum, however, the impedance-plane plots remain

undistorted in terms of shape.

The high-frequency distortions were shown to be

due to enclaves of electrode material in percolating

electrolyte clusters, i.e., electrode particles not

connected to the current collector, in Sunde [24]. At

low frequencies these con®ned electrode-particle

regions are effectively blocked by the high impedance

of the electrode-electrolyte interface which current

would have had to surmount if it was to pass through

them. As the frequency increases, however,

the magnitude of this interfacial impedance drops,

and the electrode enclaves do to an increasing

degree conduct current. This effect therefore

alters the current distribution in the electrode

with frequency. The phenomenon is illustrated in

Fig. 3.

As can be expected, the changes in current

distribution with frequency are very dependent on

electrode structure. Figs. 4 through 6 shows the

impedance of a composite containing 50 volume

percent electrode material, during electrode particle

aggregation. In Fig. 4, the electrode and electrolyte

particles have the same radius. In Fig. 5, the electrode-

particle radius has increased to one and a half times

that of the electrolyte-particle radius, and in Fig. 6 to

Simulations of Composite Electrodes in Fuel Cells 159



two times that of the electrolyte-particle radius. The

other parameters are as given in Fig. 4 of Sunde [24]

along with the details of the interfacial impedance.

The single-contact interfacial impedance appears in

the impedance-plane plot for these parameters as a

single semicircle.

It is worth noting the large increase in both ohmic

resistance and polarization resistance of the composite

Fig. 3. Current distribution at low (solid arrows) and high frequency (dashed arrow) in a composite electrode. At low frequency the high

interfacial impedance Zi�o� effectively blocks current from passing through highly conducting electrode-particle enclaves in sample-

spanning electrolyte clusters. As the frequency increases jZi�o�j drops, and the electrode enclaves do to increasing extent take part in

current conduction. This distorts the high-frequency part of the impedance spectra [24]. The same is not true for electrolyte enclaves in

sample-spanning electrode clusters, however, due to the (usually) much lower conductivity of the electrolyte.

Fig. 4. Dimensionless impedance-plane plot calculated for a composite with F � 0:5 and a � ael=aed � 1. All other parameters are as in

Fig. 4 of Sunde [24], which also de®nes the dimensionless impedance and explains the model for the interfacial impedance corresponding

to sp used.
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Fig. 5. Dimensionless impedance-plane plot calculated for a composite with F � 0:5 and a � ael=aed � 2=3. All other parameters are as in

Fig. 4 of Sunde [24], which also de®nes the dimensionless impedance and explains the model for the interfacial impedance corresponding

to sp used.

Fig. 6. Dimensionless impedance-plane plot calculated for a composite with F � 0:5 and a � ael=aed � 1=2. All other parameters are as in

Fig. 4 of Sunde [24], which also de®nes the dimensionless impedance and explains the model for the interfacial impedance corresponding

to sp used.
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electrode with decreasing ratio between the electro-

lyte particle radius and electrode particle radius

a � ael=aed , Fig. 4 through 6. (Note the error in the

symbol list in Sunde [23] and [24], where R,

corresponding to a in the present paper, should be

the ratio between electrolyte and electrode particle

radius and not vice versa.)

The impedance calculations are dif®cult to verify

by comparison with experimental data, simply

because of the large scatter in the published

experimental results. On the other hand, this scatter

may itself be taken as an indication of justi®cation of

the predicted strong in¯uence of structure on

impedance data. Another dif®culty is extrapolation

of data for single-point electrodes to interfacial

impedances as they occur in the composite. In some

cases, however, there is (qualitative) agreement

between the model and measurements. For example,

the temperature-dependence of the shape of im-

pedance-plane plots for composite cathodes reported

by Juhl et al. [20] is similar to the corresponding ones

calculated by Sunde [24].

Thus, with Eqs. (3) through (5) the conductivity,

polarization resistance and impedance of the compo-

site can be evaluated as a function of the conductivity

of the constituent materials, sp, electrode structure

(aed, ael, lTPB, leded, lelel and lattice structure), electrode

thickness, volume fraction of electrode material and

porosity. In principle, the model therefore contains no

free parameters. In practice, however, the porosity can

vary quite a lot, and the neck circumferences are likely

to be distributed around some mean value rather than

all taking one single value. The mean values for the

different types of necks (i.e., electrode-electrode,

electrode-electrolyte, and electrolyte-electrolyte)

may also be different. Finally, Eqs. (4) and (5) are

approximations in two respects. First, at high

frequencies they are better the shorter the lij, and for

large neck circumferences lij might better be regarded

as an effective neck circumference rather than its

geometrical value. In addition, at low frequencies the

current may be constricted to the close vicinity of the

three-phase boundary (due to limited transport of

reactants and products). If so, the assumption that the

ohmic part of the resistance of an electrode-electrolyte

contact is the sum of half the ohmic resistances of the

corresponding homogeneous contacts (i.e., the terms

�2sed�ÿ1
and �2sel�ÿ1

in Eq. (5)) appears to break down

[40,41]. (Actually, this assumption not exact even for a

two-phase contact, since the primary and secondary

current distributions are not the same [42a]. However,

effects of current constriction are presumably to a large

degree already included in the �sp�ÿ1
-term of Eq. (5),

since constriction is usually not corrected for in

measurements of sp. Current-distribution effects may

therefore not be the most signi®cant cause for any

inaccuracy of Eq. (5), at least for dc calculations.) All

these factors work against the precise evaluation of lij

via electrode porosity under all circumstances. The

degree of agreement between porosity and conduc-

tivity in Fig. 1 is nevertheless somewhat reassuring.

Macroscopic Porous-Electrode Theories

Like models based on random packing of particles, two

of the basic assumptions behind macroscopic porous-

electrode theories are that the composite electrode can

be represented by particles of electrolyte and electrode

material packed together completely at random and

that current is conducted from particle to particle

through necks formed between them. However,

instead of using computer-generated packing where

all particle positions and types are known, macro-

scopic theory disregards the actual geometric details of

the composite. Instead, the electrode is described in

terms of continuous, average quantities, in analogy

with corresponding theory for single-phase porous

electrodes used in aqueous electrochemistry [42b].

Although porous-electrode adaptations to compo-

site electrodes in principle could be made three-

dimensional, all results presented so far have been for

one-dimensional formulations. The average electric

potential in the composite is thus assumed to vary

continuously in the direction normal to the electrode

plane in the macroscopic porous-electrode model.

Only clusters of electrolyte particles and electrode

particles extending through the entire composite are

taken into account. Separate current balances for the

electrode and electrolyte clusters form a set of

differential equations for the potentials and currents

in the electrolyte and electrode clusters using effective

media expressions for their conductivity [23,25]. This

set of differential equations is then solved with

constant-current boundary conditions [23,25]. Linear

expressions are used for the kinetics of the electro-

chemical reaction [23,25]. From this, the total (low-

frequency) electrode resistance can be calculated

analytically. The resistance corresponding to the high-

frequency resistance can be calculated by use of e.g.,
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effective medium equations [43], the polarization

resistance emerging as the difference between these

two resistances.

For the effective conductivities of electrolyte and

electrode clusters, percolation thresholds for these

clusters are needed. These thresholds can be obtained

as a function of particle size (and possibly modi®ed

for ®nite-size scaling [36]) from coordination-number

theories [44±46] (see application section below), or

Monte Carlo or even experimental results can be used.

The other parameters of the model can be estimated in

various ways from microscopic quantities [23,25].

Since only sample-spanning electrolyte and elec-

trode clusters are included in the macroscopic porous-

electrode model, the theory will not be valid outside the

F-regime in which clusters of this type are present, i.e.,

belowFc or at volume fractions of electrolyte particles

f � 1ÿ F below their percolation threshold fc.

Outside this range, the theory is not applicable [23].

Also within the limits F � Fc and F � 1ÿ fc the

results should be used with some caution, however. In

fact, the expression for the electrode resistance

diverges at both these percolation thresholds, and we

do not recommend any ®rm conclusions to be drawn

from calculations made very close to the percolation

thresholds [25]. Nevertheless, at intermediateF, which

are those associated with the greatest engineering

interest, the macroscopic theory gives very good

agreement with the results of Monte Carlo simulations

[23]. This result holds also for thin electrodes, thus

rebutting the impression one may get from the work of

Costamagna et al. [25] that the theory is valid only for

large ratios of thickness to particle radius. TheF-range

for which it does provide accurate results is expected to

be somewhat dependent on thickness, but this exact

dependence has not yet been sorted out, c.f. [23,25].

When used with coordination number theories for

particle packings, the macroscopic porous-electrode

theory agrees with all relevant observations on the list

presented above, except again maybe experimental

observation VII.

Further details about the macroscopic theory can be

found in the section below on internal steam-reforming

of methane, where a non-linear version of it that also

includes the effects of gas-phase transport is presented.

However, before concluding this section we would like

to make one ®nal point: In analogy with aqueous

electrochemistry [42b], the difference between single-

pore models such as the thin-®lm model and

macroscopic models appears to lie primarily in the

interpretation and/or calculation of parameters. In both

cases the differential equations to treat are the same,

c.f. Kenjo et al. [17] and Sunde [23]. We have here

nevertheless made a distinction between these two

approaches due to the fact that aspects of connected-

ness of electrode and electrolyte clusters have not yet

been taken into account in the thin ®lm models. All

phases are simply assumed to be contiguous. This

makes in our opinion a very signi®cant difference from

the macroscopic approach in which one calculates

conductivties etc. from relationships that do take the

degree of contiguity of clusters into account, c.f. the

application section below.

Summary of Models

The three different approaches to modeling of

composite electrodes in SOFC are compared with

respect to the experimental observations listed in the

section on salient experimental features above in Table

1. Although observation I is not something predicted

by the models but would rather be more appropriately

listed as a model assumption, it is included in the table

to highlight the differences between the theories. The

prediction concerning porosity is taken to be ful®lled if

porosity enters the model directly or indirectly as an

independent parameter, and if a porosity in the order of

30% makes the model predict other measurable

quantities in agreement with their experimental

values, e.g., conductivity. The column for the

macroscopic porous-electrode theory in Table 1 has

been ®lled in assuming that percolation thresholds are

calculated using coordination-number theories [44±

46] for percolation thresholds.

From Table 1, the Monte Carlo model appears to

represent the type of approach that best predicts the

most important experimental features of composite

electrodes. Its range of applicability is also larger than

the other two. In terms of quantitative agreement with

polarization resistance and conductivity, all three

models are apparently of equal rank. However, one

should not disregard the fact that whereas the thin-®lm

model contains free parameters (®lm resistivity and

charge-transfer conductance), in the other two models

the free parameters (neck circumferences) are

constrained to also be compatible with a measurable

quantity ( porosity), at least for low values of lij.
In terms of simplicity, the macroscopic porous-

electrode theory and the thin ®lm models are clearly
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superior to the Monte Carlo approach. Also, the

Monte Carlo approach does not lend itself easily to the

introduction of phenomena that are best treated on a

continuum basis, e.g., gas-phase diffusion, in the

model.

In summary then, the basic phenomena occurring

in composite SOFC electrodes are best studied by the

Monte Carlo method. The porous-electrode model

may, however, with regard to its simplicity and its

ability to assess its own range of applicability, emerge

as the most practical method for applied research. We

illustrate this point in the next section.

Application: Internal Steam Reforming of
Methane in SOFC

Internal reforming of natural gas at the anode of an

SOFC [2] to form species more electrocatalytically

active than e.g., methane, is expected to simplify

system design and to improve the thermodynamic

ef®ciency of the cell with respect to operation on

externally reformed gas [47]. The overall amount of

electrochemically produced heat is more than enough

to balance the overall energy required for the

endothermic reforming reaction [48,49]. However,

unless the reforming and electrochemical reactions

occur at comparable rates locally, large temperature

gradients in the cell may result [48±50], among other

things giving rise to intolerable mechanical stresses.

Recent data indicate that the reforming reaction

proceeds at a rate of roughly 5 mol hÿ1 gÿ1
Ni at a

cermet composed of Ni and YSZ under a partial

pressure of methane of 0.25 atm and at 1000�C [51]. If

we assume a porosity of 35%, a volume fraction of Ni

of 50% with respect to all solid material, and all

particle radii to be equal, a 50 mm thick cermet

contains 1.5 ? 10ÿ 2 gNi cmÿ2. Under a current load of

100 mA cmÿ2, the ratio w between the reforming rate

and the electrochemical reforming rate (converted to

mol hÿ1) at this cermet would be in the order of 50. It

therefore appears that a balancing of the two reactions

is within reach, by a careful optimization of the

electrode structure. Such a balancing would require a

knowledge of effects due to mass transfer and

coupling between the electrochemical and reforming

reactions neglected in this rough estimate, however.

Also, one might have to pay for a better balancing of

the two reactions in terms of increased overvoltage of

the electrode, corresponding to a loss in cell power.

In order to facilitate the design of electrode

structures capable of balancing the rates of the

reforming and electrochemical reactions, we develop

here a mathematical model for internal reforming at

an SOFC Ni-YSZ anode with concurrent electro-

chemical reaction based on the macroscopic porous-

electrode approach. Our purpose is to demonstrate

that signi®cant reduction in w may be achieved with

negligible loss in overpotential by optimizing cermet

thickness, to discuss other, microstructural means to

the same end, and as stated above demonstrate a

practical application of the macroscopic porous-

electrode theory. After formulation of the theory and

a discussion of parameter choices, results will be

presented and discussed in terms of feasibility of

internal reforming of methane at conventional Ni-

YSZ anodes.

Physical Description and Assumptions

A gas mixture of hydrogen, methane, water vapor,

carbon monoxide and carbon dioxide is led past the

composite electrode at constant ¯ow rate and a total

pressure of p0 � 1 atm. The gas mixture results from

pre-reforming of methane with steam at an initial

steam-to-carbon ratio S/C, and a subsequent shift

reaction

CH4 � H2O?
/CO� 3H2 �6�

CO� H2O?
/CO2 � H2 �7�

Table 1. Comparison of models of composite electrodes for SOFC.

Theoretical predictions in agreement with experimental observa-

tions are indicated by a H symbol

Experimental

observations Thin ®lm Monte carlo Porous electrode

I H H
II H H
III H H
IV H H
V H H
VI H H
VII

VIII H H
IX H
X H H H
XI �H � H
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The pre-reforming is allowed to proceed until a given

fraction D of the methane initially present has reacted

according to Eq. (6), before the exposure to the

composite anode.

A steady-state current is passed through the

electrode. We want to calculate the distribution of

partial pressures and rates of chemical and electro-

chemical reactions within the electrode, as functions

of current and gas composition. To assess the effect

of a change in anode thickness or a microstructural

parameter on power loss of the fuel cell, we also

want to calculate the potential at the current

collector relative to that in the bulk electrolyte

close to its interface to the anode. We make the

following assumptions in addition to those under-

lying the macroscopic porous-electrode theory (vide

supra):

1. The electrode under test is small enough that

there are no gradients in the transverse directions

in partial pressures, temperature etc.

2. Reactant and product gases are transported

through voids left between the particles, and no

portions of the composite are suf®ciently dense

that this gas- phase transport is blocked. There are

no signi®cant variations in porosity in the anode.

3. All gases behave according to the ideal gas law.

4. Gas-phase transport is adequately treated by

Fick's law of diffusion with constant diffusion

coef®cients [52]. The gas ¯ow-rate is suf®ciently

high that no partial pressure outside the anode is

in¯uenced by the reactions occurring inside the

anode.

5. The electrode material in the anode catalyses

reactions (6) and (7), whereas the current-

collector and the electrolyte are catalytically

inactive for reforming and shift.

6. The shift reaction is always at equilibrium.

7. The rate of electrochemical oxidation of species

other than H2 is at the partial pressures present

under operating conditions negligible with

respect to that of the latter [3,53±56]. The

polarization resistance for a contact between an

electrode and electrolyte particle is inversely

proportional to the three-phase boundary

between the gas-phase and the two solid

phases, lTPB [10,57±60]. The reaction proceeds

according to

H2 � Ox
o
?
/H2O� Vo

�� � 2e0 �8�

where Ox
O and V��O are (in KroÈger-Vink notation)

an oxygen atom and an oxygen vacancy in the

YSZ lattice, respectively. e0 is an electron picked

up by the current collector.

8. The electrocatalytic properties of the electrode-

electrolyte interfaces in the composite and its

catalytic activity for steam-reforming are inde-

pendent of one another [56]. That is, we assume

all rate constants to be independent of partial

pressures. Gas-phase reactions do not proceed at

any signi®cant rate.

9. The anode operates isothermally.

10. Local variations in the open-circuit potential are

negligible.

Basic Equations

Under the assumptions above, we may write for the

current density ied ¯owing through the electrode

cluster and the current density iel ¯owing through the

electrolyte cluster [23]

ied � ÿk�eddjed=dx �9�
iel � ÿk�eldjel=dx �10�

and

died=dx� diel=dx � 0 �11�
where jed and jel are the potentials in the electrode

and electrolyte clusters. (The current densities ied and

iel are averages over the entire cross-sectional area of

the electrode.) The clusters have effective conduct-

ivities k�ed and k�el, and the two ®rst relations are

expressions for Ohm's law. The last relation expresses

charge conservation. For the current transferred from

an ( percolating) electrode cluster to a ( percolating)

electrolyte cluster, we write [6]

diel=dx � lTPBi0�exp�baZs� ÿ exp�ÿbcZs�� �12�
where Zs � jed ÿ jel ÿ U0 (U0 is the open-circuit

potential), and the parameters ba and bc have the units

of reciprocal potential. In Eq. (12), i0 plays the role of

an exchange current density given with respect to TPB

length, in view of assumption (7). Thus, lTPB is the

three-phase boundary per volume in the anode. We

take i0 to depend on the partial pressures of hydrogen

and water as

i0 �
p2

p0
2

� �g2 p4

p0
4

� �g4

i0�p0
2; p

0
4� �13�
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where p2 and p4 are the partial pressures of water

vapor and hydrogen, respectively, and p0
4 and p0

2 are

reference pressures. (We assign for the following

subscript i � 1 to CH4, i � 2 to H2O, i � 3 to CO,

i � 4 to H2, and i � 5 to CO2, following their order of

appearance in Eqs. (6) and (7) above.) The parameters

g2 and g4 are apparent reaction orders with respect to

the partial pressures of water vapor and hydrogen,

respectively.

For all species, the material balance reads at steady

state and in one dimension,

ÿ d Ni

dx
� Ri � 0 �14�

where Ni is the molar ¯ux of species i relative to

stationary coordinates and averaged over the entire

cross-section of the electrode, and Ri is the rate of

production (in mol cmÿ3 sÿ1) of species in chemical

and electrochemical reactions. According to assump-

tions 3 and 4 above,

Ni � ÿ
De

i

RT

dPi

dx
�15�

where R is the gas constant, T the temperature, pi the

partial pressure of species i, and Di
e the effective

diffusion coef®cient of species i in the gas mixture in

the pores of the composite anode.

Denoting the rate of reactions (6) and (7) rI and rII,

respectively, both normalized with respect to surface

area of catalyst (electrode material) (mol cmÿ2 sÿ1),

we may write

R1 � ÿ arI �16�

R2 � ÿ ar1 ÿ arII �
1

2F

diel

dx
�17�

R3 � arI ÿ arII �18�

R4 � 3arI � arII ÿ
1

2F

diel

dx
�19�

and

R5 � arII �20�
where a is the surface area of electrode particles per

volume in the anode (cmÿ1). The last terms in Eqs.

(17) and (19) are production of water and consump-

tion of hydrogen, respectively, due to reaction (8)

above. For the rate of the reforming reaction (6), we

will use [47]

rI � k pI ÿ
p3p3

4

KIp2

� �
�21�

where k is a rate constant (mol cmÿ2 sÿ1 atmÿ1) and

KI is the equilibrium constant for reaction (6). From

assumption 6),

p5 �
KIIp2p3

p4

�22�

where KII is the equilibrium constant for reaction (7)

above. Suf®cient boundary conditions for the coupled

Eqs. (9) through (22) are given by

iel � ÿ I; ied � 0;jel � 0;Ni � 0; x � 0 �23�
and

iel � 0; pi � ps
i ; x � L �24�

where L is the thickness of the composite electrode

and x � 0 corresponds to the interface between the

composite anode and the bulk electrolyte [23,42b,61].

I is the super®cial current density, and ps
i is the partial

pressure of species i at x � L.

Analysis

By integrating Eq. (11) using the ®rst and second of

the boundary conditions in Eq. (23), we may combine

Eqs. (9) and (10) to give

dZs

dx
� ÿ ied

1

k�ed

� 1

k�el

� �
ÿ I

k�el

�25�

where we have set U0 � 0. (That is, the potential is

measured with respect to a reference electrode of the

same kind. See also assumption 10.) Introducing the

dimensionless parameters

y � x=L; �2 � balTPBi0L2 p0� ��g2�g4�

p0
2

ÿ �g2 p0
4

ÿ �g4

1

k�ed

� 1

k�el

� �
;

b � bc

ba

�26�

and in addition using dimensionless partial pressures

xi � pi=p0, where p0 is the total pressure at x � L, and

dimensionless potential f � baZs, Eq. (25) may be

differentiated and the result combined with Eqs. (12)

and (13) to read in dimensionless form

d2f
dy2
ÿ �2x2

g2x4
g4 ef ÿ eÿbf
ÿ � � 0 �27�
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Reactions (6) through (8) give three independent

stoichiometric relations for ®ve unknown partial

pressures. Three dependent variables are therefore

enough to describe the system, and the other two can

be obtained by implicit relations. We choose here p1,

p2 and p5 as the independent variables, and note that

from Eqs. (14) and (16) through (20) we may write

dN3

dx
� ÿ dN1

dx
ÿ dN5

dx
�28�

and

dN4

dx
� ÿ2

dN1

dx
ÿ dN2

dx
�29�

Introduction of Eq. (15) into Eqs. (28) and (29), and

use of the boundary conditions Eqs. (23) and (24),

allow Eqs. (28) and (29) to be solved to give partial

pressures p3 and p4 as a function of p1 and p5, and p1

and p2, respectively [62]. On dimensionless form,

Eqs. (9) through (22) and the solutions of Eqs. (28)

and (29) can be combined to give the following set of

equations

d2x1

dy2
ÿ p11x1 � p12x3x

3
4x
ÿ1
2 � 0 �30�

d2x2

dy2
ÿ p21x1 � p22x3x

3
4x
ÿ1
2 � p23

d2x5

dy2

� p24

d2f
dy2
� 0 �31�

x3 � p31x1 � p32x5 � x3
s � p31x

s
1 � p32x

s
5 �32�

x4 � p41x1 � p42x2 � xs
4 � p41x

s
1 � p42x

s
2 �33�

and

x5 ÿ KIIx2x3x
ÿ1
4 � 0 �34�

Here, xi
s denote the value of xi at x � L, i.e., pi

s=p0. In

Eqs. (30) through (34), we have also introduced the

dimensionless variables

p11 � akRTL2=De
1 �35�

p12 � akRTL2�p0�2=KID
e
1 �36�

p21 � akRTL2=De
2 �37�

p22 � akRTL2�p0�2=KID
e
2 �38�

p23 � De
5=De

2 �39�

p24 �
RT

2FbaDe
2p0

1

k�ed

� 1

k�el

� �ÿ1

�40�

p31 � De
1=De

3 �41�
p32 � De

5=De
3 �42�

p41 � 2De
1=De

4 �43�
and

p42 � De
2=De

4 �44�
(KII in Eq. (34) is already dimensionless). Finally, by

the use of the dimensionless current d and the

conductivity ratio k,

d � baIL
1

k�ed

� 1

k�el

� �
; k � k�el

k�ed

�45�

we may write the boundary conditions on dimension-

less form as

dx1

dy
� dx2

dy
� 0; y � 0 �46�

x1 � xs
1; x2 � xs

2; y � 1 �47�
df
dy
� ÿ d

k� 1
; y � 0 �48�

df
dy
� dÿ d

k� 1
; y � 1 �49�

Method of Solution

The set of nonlinear Eqs. (27) and (30) through (34),

of which Eqs. (27), (30) and (31) are differential

equations with boundary conditions (46) through (49),

constitute a well-de®ned problem once the dimension-

less constants and cell current d are speci®ed. The

equations are solved by linearizing around a trial

solution, and the resulting linear equations solved by

Newman's BAND subroutine, as outlined in Newman

[42c]. The calculations are then repeated using the

solution obtained as the new trial solution, until

convergence. An appropriate trial solution for f is

obtained by linearizing Eq. (27) with respect to f,

using x2 � x2
s and x4 � x4

s, and solving the resulting
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second-order differential equation with respect to f
with boundary conditions (48) and (49).

Current-collector Potential

In order to calculate the measured current-collector

potential, jed�x � L�, from Zs, we need to evaluate

jel�x � L�. A second-order differential equation for

jel�x� can be obtained by differentiating Eq. (10) and

combine the result with Eq. (12). One gets

ba

d2jel

dy2
� �2

k� 1
x2

g2x4
g4 ef ÿ eÿbf
ÿ � � 0 �50�

which may be solved using the result for Zs, x2, and x4

found above. Boundary conditions are implicitly

given by Eqs. (10), (11), (23) and (24), and Eq. (50)

is also conveniently solved using the BAND-routine.

jed�x � L� is then found as Zs ÿ jel�x � L�.
For an analytical approximation to bajed�L�, the

trial solution for f (see above) may be combined with

the linearized version of Eq. (50) and associated

boundary conditions. The result is given in Sunde [23]

and Newman [42b], and may with the present

dimensionless parameters be written as

bajed�L� �
d

2� k� 1=k

1� 2� �k� 1=k� cosh
������������������������������������������
�2�1� b��xs

2�g2�xs
4�g4

p������������������������������������������
�2�1� b��xs

2�g2�xs
4�g4

p
sinh

������������������������������������������
�2�1� b��xs

2�g2�xs
4�g4

p" #
�51�

Estimation of Constant Parameters

If the pores in the anode are much smaller than the

mean free path of the diffusing species, the diffusion

process will be dominated by molecule-wall interac-

tions, whereas in bulk diffusion molecule-molecule

interactions are important. For YSZ-cermets, a typical

average pore diameter is in the order of 1 mm [63],

which corresponds roughly to the mean free path of

e.g., methane at 1000�C. For this transition regime, we

therefore evaluate the diffusion coef®cient from [52]

De
i �

1

De
i;m

� 1

De
i;k

 !ÿ1

�52�

De
i;m �

1

�1ÿ xi�
Xn

j� 1; j 6� i

De
ijxj �53�

De
i;k �

4

3
K0

8RT

pMi

� �1=2

; De
ij �

e
t

D0
ij �54�

where D0
ij is the binary diffusion coef®cient for a gas

mixture of species i and j, De
ij an effective diffusion

coef®cient for a binary mixture of i and j in a porous

medium of porosity e and tortuosity t, De
i;k the

Knudsen diffusion coef®cient of species i multiplied

by e/t, Mi the molecular mass of species i, Di;m the

effective diffusion coef®cient of species i in a

multicomponent gas mixture, and xi the mole fraction

of species i. K0 is a proportionality factor dependent

on the pore radius (Knudsen coef®cient), which we

will set equal to 102 cm mÿ1 r�e=2t� (c.f. Veldsink

[52] and Solheim [64]). Typical values for e and t are

0.3 [4] (experimental observation II) and 3, respec-

tively. Values for Mi are found in standard tables to

give De
i;k for i � 1; . . . ; 5.

Values for D0
ij at the temperatures under considera-

tion here (1000�C), are obtained by extrapolating the

low-temperature values in Bossel [65] by the

procedures indicated in Bird et al. [66]. Thus,

D0
12 � 8:4 cm2sÿ1, D0

13 � 3:1 cm2sÿ1,

D0
14 � 9:8 cm2sÿ1, D0

15 � 2:5 cm2sÿ1,

D0
23 � 8:1 cm2sÿ1, D0

24 � 27:4 cm2sÿ1,

D0
25 � 6:6 cm2sÿ1, D0

34 � 10:5 cm2sÿ1,

D0
35 � 2:3 cm2sÿ1, D0

45 � 9:1 cm2sÿ1

may serve as typical values (in addition, D0
ij � D0

ji).

For the effective conductivities k�ed and k�el above

we will use [23]

k�ed � �kedleded=8aed��1ÿ �1ÿ F�=�1ÿ Fc��t �55�
and

k�el � �kellelel=8ael��1ÿ F=�1ÿ fc��t �56�
where F is the volume fraction of electrode particles

taken with respect to all solid. The parameter t is an

empirical one, for which we will use the value 1.7

[22,23,43]. In Eq. (55), Fc is the percolation threshold

for electrode clusters, as above. In Eq. (56), fc again is

the minimum volume fraction of electrolyte particles

needed for the presence of an electrolyte cluster

spanning from x � 0 to x � L, i.e., the analog of Fc.

The circumference of necks formed between electrode

particles is denoted leded, and lelel is used for the neck

circumference of electrolyte-electrolyte necks. The
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radii of electrode and electrolyte particles are still aed

and ael respectively (leded; lelel; aed and ael are all

assumed monodisperse). The factors leded=8aed and

lelel=8ael are introduced in an attempt to correct for

porosity, and the details of how they are arrived at can

be found in Sunde [22]. As the assumptions behind the

factors kedleded=8aed and kellelel=8ael in Eqs. (55) and

(56) may break down for the large neck peripheries

that would result for very low porosities (vide supra),

these factors are replaced by the bulk conductivities

ked and kel, respectively. We will indicate below

whenever this is the case.

We now explain the use of coordination number

theories for calculating the percolation thresholds fc
and Fc. As in Sunde [23] and Bouvard and Lange [44],

these are obtained via the coordination numbers Zelel

and Zeded. Zelel is the average number of electrolyte-

particle neighbors that an electrolyte particle has in a

random particle packing. Zeded is the average number

of electrode-particle neighbors of an electrode particle.

We thus assume that fc and Fc may be associated with

universal critical coordination number Zc
elel and Zc

eded

[44], both equal to 2.0 at the percolation threshold, i.e.,

Zc
elel � 2:0 at f � fc and Zc

eded � 2:0 at Fc [44]. Zeded

and Zelel will be calculated from the coordination-

number theory by [44], according to which

Zjk � ZjpkZk=Zt �57�
where j and k refer to particle type, and both can be

``ed'' or ``el''. If k �``ed'', pk is equal to the number

fraction of electrode particles p. If k �``el'', pk is the

number fraction of electrolyte particles, equal to 1-p.

The coordination numbers Zed and Zel for the total

number of neighboring particles of electrode and

electrolyte particles, respectively, in Eq. (57), may be

calculated from

Zed � 3� �Zt ÿ 3�=� p� �1ÿ p�a2� �58�
and

Zel � 3� a2�Zt ÿ 3�=� p� �1ÿ p�a2� �59�
The number fraction of electrode particles p is found

from

p � F=�F� �1ÿ F�=a3� �60�
Zt is the total average coordination number, taken here

to be equal to six [44], and a is the ratio between the

radius ael of electrolyte particles and the radius aed of

electrode particles. With F � Fc when Zeded �

Zc
eded � 2:0 and 1ÿ F � fc when Zelel � Zc

elel � 2:0,

Eqs. (57) through (59) can be combined to give Fc and

fc.

For interfaces between percolating electrolyte and

electrode clusters, the total TPB length per volume,

lTPB, is proportional to the TPB length per contact

between an electrode and an electrolyte particle

ledel � lTPB, to the number of electrode particles per

volume n, to the average number of electrolyte

particles that each of these electrode particles contact

Zedel, and the probability that both the participating

particles in an electrode-electrolyte contact are also

connected to both bulk phases. We therefore write

lTPB � lTPB ? n ? Zedel ? Pc�Zeded� ? Pc�Zelel� �61�
In Eq. (61), Pc�Zeded� and Pc�Zelel� are the

probabilities that electrode particles and electrolyte

particles are a part of electrode and electrolyte

clusters, respectively, spanning from one side of the

composite to the other [44],

Pc�Zij� � �1ÿ �2ÿ Zjj=2�2:5�0:4 �62�
where j �``ed'' or ``el''. Zeded and Zelel will be

calculated from Eqs. (57), (58) and (59). n in Eq. (61)

can be found from

n � BF=�4pa3
ed=3� �63�

which follows from assuming a constant relative

density B for the composite when all the particle

volumes are taken to be those of spheres. The relative

density is de®ned here as the volume of all particles

divided by the total volume of the composite. B may

be taken to be equal to 0.6 [22,33,67,68].

Note that the assumed presence of two percolating

clusters in the calculations above corresponds to

1ÿ F4fc�a� and F4Fc�a� [23].

Table 2 summarizes some parameter values or

ranges assumed to be relevant for typical Ni-YSZ

anodes. For parameters depending on temperature, the

values at 1000�C are given. In the table, what we will

refer to as parameter set (a) below, are given in

parentheses for those parameters for which ranges are

indicated. The effective conductivities, the diffusion

coef®cients and lTPB, which are obtained indirectly

from the equations above, are not given, however.

The range for the rate constant for Eq. (6) has been

obtained indirectly. Belyaev et al. [56] quotes an

Arrhenius-type of rate constant with a preexponential

of 2:6 ? 109mmol minÿ1 (vol % CH4�ÿ1
gÿ1 for
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Ni-ZrO2-CeO2 electrodes containing 93% Ni.

Converting this to an area-speci®c value by assuming

a mean Ni-particle radius of 1 mm and spherical

particles, and changing the other units to those used

here, gives a value of roughly

10ÿ2 mol sÿ1 cmÿ2 atmÿ1. (If we approximate the

surface area of Ni by that of an assembly of spheres

of radius aed, the area of Ni per area of anode is

3LBF=aed.) With an activation energy of 162 kJ

molÿ 1 [56], this amounts to a rate constant k of

2 ? 10ÿ9 mol sÿ1 cmÿ2 atmÿ1. A similar calculation for

the data of édegaÊrd et al. [51] gives at 1000�C a rate

constant k approximately equal to

2:1 ? 10ÿ6 mol sÿ1 cmÿ2 atmÿ1. (In the latter work,

the reaction order with respect to methane is 1.2. Here,

we have neglected this difference, and simply used the

numerical value of the preexponential in édegaÊrd et

al. [51] in the units of mol sÿ1 cmÿ2 atmÿ1.) Using a

Ni-radius of 1 mm and in addition assuming a porosity

of 35%, the preexponential of Achenbach and

Riensche [47] for Ni-YSZ cermets with 20 wt % Ni

may be converted to 5 ? 10ÿ3 mol sÿ1 cmÿ2 atmÿ1. The

activation energy in the latter work is 82 kJ molÿ 1,

giving k � 2:2 ? 10ÿ6 mol sÿ1 cmÿ2 atmÿ1, in reason-

able agreement with édegaÊrd et al. [51]. For our

present purposes, we will use the range of rate

constants shown in Table 2.

The speci®c exchange-current i0� p0
H2 � 0:97 atm,

p0
H2O � 0:03 atm) has been estimated from the speci®c

polarization conductances kp in the table by assuming

that the relation kp � i0�ba � bc� holds [6]. There

appears to be no agreement in the literature

concerning apparent reaction orders with respect to

water and hydrogen, but i0 appears to be less sensitive

towards the pressure of the latter than towards the

water-vapor pressure. However, both positive and

negative values for both g2 and g4 are indicated in the

literature [3,9,59,73±76].

For large porosities, the speci®c surface area a

(cmÿ1) may be estimated via Eq. (63), again assuming

the surface areas of the particles to be roughly that of

spheres (as for porosity). The mean pore diameter,

used in the calculation of diffusion coef®cients, can

easily be estimated by considering a cubic lattice in

which the radii of the initially spherical particles are

increased beyond the lattice constant, truncating

overlapping regions [78] (vide supra). The average

pore radius of the narrowest part of pore throats is then

Table 2. Parameters for Ni-YSZ anodes for SOFCs. The values for the temperature-dependent parameters are given for a temperature of

1000�C. Numbers in parentheses following ranges are values corresponding to parameter set a

Parameter Value Ref.

a 3 ? 103 ÿ 9 ? 103 cmÿ1�9 ? 103 cmÿ1�
r 0:02ÿ 0:5 mm�0:5 mm�
L 1ÿ 100 mm�50 mm� [2,6,7,64,69]

ked 2 ? 104 S cmÿ1 [70]

kel 0.1 S cmÿ 1 [29]

lTPB=aed 3ÿ 6�3� [19,22,23,]

leded=aed ; lelel=ael 3ÿ 6�3� [19,22,23]

aed 0:1ÿ 5 mm�1 mm� [4,69]

ael 0:1ÿ 40 mm�1 mm� [4,6,69]

F 0:4ÿ 0:5�0:5�
t 1.7 [22,23,43]

kp�pH2
0 � 0:97 atm; pH2O

0 � 0:03 atm� 10ÿ6 ÿ 10ÿ3 S cmÿ1�10ÿ4 S cmÿ1� [10,38,57,71]

i0�pH2
0 � 0:97 atm; pH2O

0 � 0:03 atm� 4 ? 10ÿ8 ÿ 4 ? 10ÿ5 A cmÿ1

�4 ? 10ÿ6 A cmÿ1�
k 10ÿ9 ÿ 10ÿ6 mol sÿ1 atmÿ1 cmÿ2 [47,51,56]

�10ÿ6 mol sÿ1 atmÿ1 cmÿ2�
KI 9:225 ? 103 atm2 [72]

KII 0.5864 [72]

g2 50ÿ 1�1� [52,73±76]

g4 ÿ1=2ÿ 1=2�0� [52,73±76]

ba, bc 2F/RT,F/RT [60,77]
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roughly equal to the lattice constant minus the radius

of the particle-particle contact (neck) area, which can

be calculated from neck circumferences lTPB, leded and

lelel. Since the latter can also be related to porosity, Eq.

(2), porosity and pore radius are therefore correlated.

For e � 0:3, r is in the order of 0.5 aed for a cubic

lattice, and for e � 0:04, which is close to the

percolation threshold for gas-phase transport in

cubic and random packings [78], r is in the order of

0.02 aed for a cubic lattice. We will take these

estimates to be valid also for a random packing. For

porosities of 4%, we reduced the speci®c surface area

a by a factor of three with respect to that for porosities

of 30%, to take into account the larger particle-particle

interface areas. Also, lTPB roughly doubles.

Results

In Fig. 7 is shown dimensionless potential at the

current collector, bajed�L�, as a function of dimen-

sionless current for four different parameter sets as

given in the caption. Curve a corresponds to

parameter set a (Table 2). In curve b, the reaction

order with respect to water has been changed to ÿ 0.5.

�2 has been changed accordingly to 4.47 (�2 changes

with g2 and g4, if i0 at p0
H2 � 0:97 atm and

p0
H2O � 0:03 atm is kept constant, Table 2). In curve

c, g4 has been set to 0.5, with a concomitant change in

�2 to 873.4. In all of these calculations S=C � 2 and

D � 0:05. A calculation with the latter changed to 0.5

for the same parameter set as a is given in curve d of

Fig. 7. The range for d corresponds roughly to the

current range 0 through 1 A cmÿ 2. The linear solution

for bajed�L�, Eq. (51), with parameters corresponding

to curve b, is also shown in the ®gure. As apparent

from the Fig. 7, for parameter set b, the linear

solution, Eq. (51), is a reasonable approximation to

the full solution only at the lower currents (d42,

corresponding approximately to 80 mA cmÿ 2). (For

the numerical calculations, bajed�L� was ascertained

to vary as the square of the step length used in the

calculations, as it should with the discretization

Fig. 7. Dimensionless potential at the current collector, bajed�L�, as a function of d. Parameters: a p11 � 8:235 ? 10ÿ2, p12 � 8:927 ? 10ÿ7,

p21 � 7:824 ? 10ÿ2, p22 � 8:481 ? 10ÿ7, p23 � 5:882 ? 10ÿ1, p24 � 3:511 ? 10ÿ4, p31 � 1:303, p32 � 8:068 ? 10ÿ1, p41 � 7:340 ? 10ÿ1,

p42 � 3:863 ? 10ÿ1, KII � 0:5864, b � 0:5, k � 5 ? 10ÿ 6, �2 � 860:2, g2 � 1, and g4 � 0. b g2 � ÿ 0:5 and �2 � 4:47. All other parameters

as in a. For this calculation, the linear solution Eq. (51) is also shown (short dashes). c g4 � 0:5 and �2 � 873:4. All other parameters as in

a. d Same parameters as in a. Partial pressures at y � 1 corresponds to S=C � 2 and D � 0:05 for curves a, b, and c, and S=C � 2 and

D� 0.5 for curve d.
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procedure used here [42b].) For the other curves a, c

and d, the corresponding linear solutions, Eq. (51),

were in good agreement up to much higher currents,

typically d � 15, corresponding to 600 mA cmÿ 2. At

currents higher than this, the numerically calculated

bajed�L� were less than the linear solutions, Eq. (51),

also for these parameter sets.

In Fig. 8 is shown the dimensionless electro-

chemical reaction rates (current distribution), dj/dy,

where j � ied=I, at d� 2 for the same parameter sets

as in Fig. 7. In addition, the current distribution for

parameter set a at d� 25 is shown as curve e. The

distribution of reforming reaction rate,

rI � d2x1=dy2, is shown in Fig. 9 for parameter set

a at d� 2. Whereas the reforming-reaction rate is

higher closest to y � 1, the electrochemical reaction is

for all parameter sets except b con®ned to a region

close to the bulk electrolyte at y � 0. The reforming is

quite evenly distributed over the entire anode,

however, compared to the usually much stronger

position dependence of the electrochemical reaction

rates.

The total rate of reforming according to reaction

(6) is equal to N1 at x � L. (This may be realized by

integrating Eq. (14) for i � 1 with respect to x from

x � 0 to x � L, and using the boundary condition

N1�x � 0� � 0, Eq. (23).) With Eqs. (15), (35), (37),

(40) and (45), one may write for the absolute value of

the ratio of the total reforming rate (in mol cmÿ2 sÿ1)

to the total electrochemical reaction rate I/2F

(mol cmÿ2 sÿ1), w,

w � N1

I=2F

���� ���� � p21

p11p24d
dx1

dy

� �
�64�

For the parameter sets in Fig. 7, dx1=dy at y � 1 was,

to within the convergence accuracy, independent of d
and equal to 2.45656 ? 10ÿ 2. For d � 2, Eq. (64) gives

w � 33:24, that is jI=2Fj5 jN1j. In line with this and

the weak y-dependence of rI, the partial pressures x1

through x5 are not very dependent on y, as shown in

Fig. 10 for parameter set a at d � 2.

At d � 25 the distribution of reforming reaction-

rate, rI, was identical to that at d � 2. With d � 25,

Fig. 8. Reduced current distribution at d� 2. Parameters are the same as in Fig. 7 for corresponding letters. In addition, the current

distribution for d� 25 for the parameter set in a, Fig. 7, is shown as curve e.

172 Sunde



w now becomes 2.65, and a slightly higher partial

pressure x2 at y � 0 therefore appeared than at y � 0

in Fig. 10 due to the electrochemical production of

water vapor. Also, x4 was lower at y � 0 at d � 25

than at d � 2, due to the consumption of hydrogen

in reaction (8). However, the effect of the

electrochemical reaction on the partial pressures x2

through x4 was barely noticeable even at these high

current densities, and x1 did not appear to be

affected at all. Figure 11 shows the partial-pressures

versus y for D � 0:5 at d � 2 for parameter set a. At

these xi
s, there are almost no pressure variations

along the anode. In all the cases treated above, the

total pressure along the anode varied less the 1% of

p0. The small deviations from p0 that were present,

were always positive.

In Fig. 12 is shown variations in w with L for

several parameter sets. Curve 1 corresponds to

parameter set a. In curve 2, the volume-fraction of

Ni, F, has been reduced to 0.4. This has consequences

for lTPB and a via Eq. (63), and both of these were

reduced by a factor 4/5 corresponding to the reduction

in F. The conductivities k�ed and k�el are similarly

affected via Eqs. (55) and (56), see also Fig. 1. In

curve 3 of Fig. 12 is demonstrated the effect of

reducing the porosity to 4%. For this calculation, the

prefactors of Eqs. (55) and (56) were replaced by bulk

conductivities as indicated above, and the lower

ranges for a and the higher for lTPB of Table 2 were

employed. Likewise, when calculating the diffusion

coef®cients, r of 0:02 mm was used. In curve 4 of Fig.

12, the radius of the electrode particles, aed , has been

increased to 2 mm with respect to the standard case,

which reduces the speci®c surface area at F � 0:5 by

a factor of 0.5 with respect to parameter set a, and lTPB

roughly by a factor of 0.4. Effective conductivities are

again affected via fc and Fc as in Eqs. (55) and (56).

While the curves 1 through 4 are calculated using

D � 0:05, curve 5 demonstrates the effect of partial

pressures at x � L on the w versus L curve. In Fig. 12,

all curves except the low-porosity case appear to be

almost linear. (For thickness-dependence calculations,

it is convenient to introduce new dimensionless

quantities, since many of those used so far depend

on L. Thus one may keep constant p11=d
2, p12=d

2,

p21=d
2, p22=d

2 and �2=d2, rather than p11, p12, p21,

p22, and �2, respectively. d may then serve as

dimensionless thickness for given current, Eq. (45),

since no other dimensionless parameters depend on L
if this replacement is made. Also, we may express Eq.

Fig. 9. Reduced distribution of rate of reaction (6) at d� 2. Parameters are the same as for curve a in Fig. 7.
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(64) in terms of p11=d
2 and p21=d

2 by multiplying

both numerator and denominator by d2.)

In Fig. 12, while thickness is crucial in determining

w, the effect of F, of the electrode-particle size, and of

e is more moderate. (Although the porosity may

appear to be signi®cant in reducing w, a porosity of

e � 0:04 must be considered quite extreme in the

present context (experimental observation II), and

possibly not obtainable in practice in a well-controlled

manner.) In spite of this, the current-collector

Fig. 11. Dimensionless partial pressures at d� 2. Parameters are the same as curve d in Fig. 7.

Fig. 10. Dimensionless partial pressures at d� 2. Parameters are the same as curve a in Fig. 7.
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potential for none of the cases indicate signi®cant

power loss for thicknesses larger than roughly 10 mm,

Fig. 13. Beyond a certain threshold, the potential is

not very thickness dependent, although an increase

with L for large L in the case with 4% porosity is

apparent. The low porosity case also differs from the

others in displaying much stronger pressure variations

within the electrode. This is demonstrated by

comparing Figs. 10 and 11 with Fig. 14, which

shows xi as functions of y for e � 0:04 at 80 mA cmÿ 2

for thickness L � 50 mm.

More rigorous expressions for the ¯uxes of gas

species than the Fick's law approach used in Eq. (15)

above, may be found in the dusty-gas model (DGM)

[52,62,79]. For an isothermal system, the DGM

expression for Ni is

Xn

j� 1; j 6� i

yiNj ÿ yjNi

PDe
ij

ÿ Ni

PDi;k

� 1

RT

qyi

qx
� yi

PRT

B0P

mDe
i;k

� 1

 !
qP

qx
�65�

where B0 is a permeability coef®cient, P the total

pressure, yi the mole fraction of species i, and m the

dynamic viscosity of the gas mixture. In Eq. (65), the

second and third terms on the right-hand side

represents viscous ¯ow and pressure diffusion,

respectively. In order to check Eq. (15) for consis-

tency with the calculations, we calculated from Eq.

(65) qxi=qy �i � 1; . . . ; 5� using Eq. (15) for all Ni for

a number of cases. In this calculation, the viscous ¯ow

terms was neglected in view of the results in Veldsink

et al. [52]. For the parameter set of curve 1 of Fig. 12,

qx1=qy calculated in this manner via Eq. (65) resulted

in a value at x � L roughly 30% off those in the ®gure.

For all other qxi=qy, the results were well within 10%

of the model. Similar results were found for curves 2

and 4, whereas for curve 3 all qxi=qy were within

10%.

In addition to the calculation above, we also

performed some using rate constants for the reforming

reaction corresponding to the lower range of Table 2.

As expected, the partial-pressure and reforming-rate

variations were much smaller than for the corre-

sponding cases with the higher value of k.

Fig. 12. Ratio w of total rate of the reforming reaction to rate of electrochemical reaction (Eq. (64)) versus thickness L, for

I � 80 mA cmÿ2. Curve 1: Parameter set a, Table 2. Curve 2: Standard parameters, but with F� 0.4. Curve 3: Standard parameters, but

with porosity reduced to 0.04. Curve 4: Standard parameters, but with a � ael=aed � 0:5. Curve 5: Standard parameters. Partial pressures at

y � 1 corresponds to S=C � 2 and D� 0.05 for curves 1 through 4, and S=C � 2 and D� 0.5 for curve 5. See text for details.
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Fig. 13. Potential at the current collector, jed�L�, versus electrode thickness L, for I � 80 mA cmÿ2. Parameters as for the corresponding

numbers of Fig. 12.

Fig. 14. Dimensionless partial pressures at L � 50 mm for case 3 of Fig. 13.
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Discussion

The gas-pressure variations along the pores in Figs.

10, 11 and 14 appears to be consistent with

assumption 10, and partly also 4 and 7, made above.

From the small variations in the total pressure along

the pores (< 1% for Figs. 10 and 11, and < 3% for Fig.

14), the treatment of gas-phase transport as purely

diffusive is presumably a very good approximation.

The Fickian diffusion model for cases with larger

pressure variations were discussed and compared with

models including pressure diffusion and viscous ¯ow

[79] by [52], for boundary conditions of the same type

as those employed here. In view of the accuracy with

which the parameters of Table 2 are known, the

simpli®ed diffusion model does also for larger

pressure variations than those found here appear to

give reasonable results [52].

The results are also in line with the assumption of

hydrogen as the only species of importance in the

electrochemical reaction (assumption 7). The spe-

ci®c polarization conductance kp for the

electrochemical oxidation of CO varies approxi-

mately as �p5=p3�1=2
for low p5=p3 and as

�p5=p3�ÿ1=2
for high p3=p5 [80], and is in the order

of 10ÿ 4 S cmÿ 1 [80,81] at p3 � 0:333 atm and

p5 � 0:667 atm [80,81]. (Older results also indicate

qualitatively the same behavior of kp with p3 and p5

[54].) The partial-pressure variations along the pores

therefore indicate that neglecting the electrochemical

oxidation of CO is a good approximation, since the

partial pressures of CO and CO2 are low and the

ratio between them is signi®cantly different from

unity [3,54,80]. The small variations in the ratio

p2=p4 also indicates small variations in U0, in line

with assumption 10.

While assumption 5 is a matter of experimental

arrangement and the assumptions underlying the

macroscopic-electrode theory has been addressed

above, the remaining assumptions can not be

checked within the present framework. Of these,

the most restricting one is probably assuming the

rate of reaction (8) to be proportional to lTPB. Recent

modeling of this reaction at composite electrodes

appear to indicate that this reaction would also

depend to a certain extent on the surface area of

particles [24]. No direct experimental evidence for

this is yet available. However, we note that in case

of a dependence of the electrochemical reaction rate

on the areas of gas-solid interfaces, the increase in

current-collector potential with reduced porosity

may be larger than expected from Fig. 13. Also,

in the latter case, using bulk conductivities instead

of the prefactors of Eqs. (55) and (56) under-

estimates the overall resistance of the electrode. We

also note that assumption 9 of isothermal operation

improves the better the electrochemically produced

heat balances the heat required by the reforming

reaction. We therefore conclude that for the cases of

most interest, the results are consistent with the

assumptions made, as far as these are possible to

check.

From Fig. 12, it appears that thickness is crucial in

controlling w for given microstructure and gas-phase

composition. The accompanying loss in power,

proportional to the increased current-collector poten-

tial, is negligible in most cases for thicknesses larger

than 10 mm (Fig. 13). At large thicknesses, there even

appears to be a small gain in power in reducing L in

some cases, Fig. 13, notably curve 3 (see below). For a

given thickness and gas composition, reducing F and

e, and using a coarser Ni network appears to have only

a moderate effect on w, Fig. 12, but a certain gain in

1=w might be expected from tuning these as well. In

addition, the prereforming rate is important (Fig. 12),

but this parameter would probably be dictated by

considerations other than optimizing w [50].

In a qualitative sense, the main conclusions above

do not appear to be affected by the parameters known

with less precision, like lTPB, kp, g2 and g4 (Table 2),

all connected to the electrochemical reaction. In

particular, w is not sensitive to the values of these for

given current, due to the value of the parameter p12.

At atmospheric pressures, p12 is typically six orders of

magnitude lower than p11 due to the large value of KI.

This means that the last term of the left-hand side of

Eq. (30) can be omitted altogether. This decouples this

equation from the remaining set, and the reforming

rate becomes independent of the parameters for the

electrochemical reaction. The overpotential and the

current distribution, however, would be affected, Figs.

7 and 8. One should note that although the value of g4

appears particularly critical, the apparent reaction

orders may affect the results in two ways. First, for

given kp at given reference pressures, the reaction

orders determine the extrapolated values of kp.

Secondly, nonzero g2 and g4 imply that kp becomes

a function of x as long as the partial pressures p2 and

p4 are functions of x. However, from Figs. 10 and 11

the position dependence of the partial pressures is not
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very strong. Therefore, the reaction orders are for

most cases important only in the ®rst, indirect sense,

namely in determining the extrapolated values of kp

(�2). Choices of kp and lTPB (or lTPB) are discussed

further in Sunde [19,22,23] and Mogensen et al.

[38].

The thickness dependence of jed�L� seems to

correlate well with the current distribution for

corresponding parameter sets, c.f. Figs. 8 (set a) and

13 (curve 1). Since the current distribution is sensitive

to g4 (Fig. 8), the exact thickness at which the

overpotential becomes a strong function of thickness

is also sensitive to g4, and will have to be ascertained

experimentally.

We also note that the thickness dependence of the

polarization resistance that can be inferred from Fig.

13 is qualitatively similar to that predicted by Eq. (1),

except maybe for the lowest porosity.

From the results presented here, it does not

appear that mass transfer is crucial in determining

the key parameters w and jed�L�, except for very

low porosity. In all other calculations, the pressure

variations and the reforming rates are not strong

functions of y, Figs. 9 through 11. In Fig. 13, the

small increase in current-collector potential at large

thicknesses may be ascribed to mass-transfer over-

potential, however. (In principle, they could also be

due to increased ohmic loss in the electrode. If this

was the case, curve 3 of Fig. 13 should display the

weaker L-dependence at large L compared to the

other cases, due to the larger conductivities k�ed and

k�el. As the opposite appears to be true, we dismiss

the possibility of ohmic loss playing a signi®cant

role.) Also, in the complete absence of mass-transfer

effects, the w versus L relationships in Fig. 12

should be perfect straight lines. A slight bending at

large L in curves 1, 2, 4, and 5, and a strong

deviation from linearity in curve 3 indicate a small

effect due to mass transfer in the ®rst four cases,

and a strong one in the latter, however. The

surprisingly good accuracy of the simple estimates

made in the introduction of this section may

therefore be ascribed to rapid mass transfer at the

temperatures relevant for SOFC operation and with

the porosities common in SOFC electrodes so far. In

most cases, Eq. (51) is a good approximation to the

jed�L�, which in conjunction with the solution of

the simpli®ed Eq. (30) may give an adequate

description of both the electrochemical and

reforming reactions.

Conclusions

In recent years, signi®cant advances have been made

in the understanding of composite electrodes for

SOFC. In this, mathematical modeling and computer

simulations have played a key role. In terms of ability

to predict salient experimental features of composite

electrode for SOFC, the Monte Carlo approach to

modeling of such electrodes appears superior to the

thin-®lm model and the macroscopic porous-electrode

theory. Nevertheless, the latter represents a simpli®ca-

tion that will give results in reasonable agreement

with Monte Carlo calculations in a restricted

parameter regime. As this regime is the one that

happens to be the most interesting one for practical

applications, the macroscopic approach should be

useful in addressing engineering issues. Also, it

appears more amenable for introducing non-linear-

ities, gas-phase diffusion etc.

As an example of applying the theory for

addressing a practical question, a model for the

internal reforming rate of composite electrodes with

concurrent electrochemical reaction was assembled.

The calculations indicate that the parameter most

important in controlling the ratio of the rate of

methane reforming to that of the electrochemical

oxidation of the reforming-reaction products at Ni-

YSZ cermet anodes, is anode thickness. Particle size,

volume fraction of Ni and porosity are less effective

parameters in balancing the reaction rates. Unless

porosity gets signi®cantly lower than 30%, mass

transfer in these electrodes is not important,

rendering simpler estimates than the calculations

performed here useful for prediction of anode

behavior.

The example shows that a theory for composite

fuel-cell electrodes that includes major features such

as connectivity, gas-phase diffusion limitations, and

non-linear electrochemical reactions can be simply

assembled using the techniques described above.
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List of Symbols

ai radius of particle of type i, mm or cm [Eq. (63)]

ap particle radius in a composite with uniform

particle radii, mm

a speci®c surface area of catalyst in the anode,

cmÿ1

A super®cial electrode area, cm2

B relative density for random packings of

spheres

B0 permeability coef®cient, cm2

D0
ij binary diffusion coef®cient for species i and j,

cm2 sÿ1

De
ij binary diffusion coef®cient for species i and j

in a porous medium with large pores, Eq. (54),

cm2 sÿ1

De
i;m diffusion coef®cient for species i in a gas

mixture in a porous medium, cm2 sÿ1

De
i;k Knudsen diffusion coef®cient multiplied by

e/t, Eq. (54), cm2 sÿ1

De
i effective diffusion coef®cient for species i in a

gas mixture in a porous medium, cm2 sÿ1

fc critical volume fraction of electrolyte particles

F Faraday's number, 96485 C molÿ 1

ii super®cial current density in cluster of type i
participating in an interface between two

percolating clusters, A cmÿ2

i0 exchange current per lTPB;A cmÿ1

I total super®cial current density, A cmÿ2

Ii sum of currents going into lattice site i, A2

Iij current ¯owing through bond ij, A2

j dimensionless current density in percolating

electrode clusters, ied=I
k rate constant for the methane-reforming

reaction, mol sÿ1 atmÿ1

ki k0ir=2;O cm3

k0i interfacial resistance, Eq. (1), O cm2

KI equilibrium constant for the reforming reaction,

atm2

KII equilibrium constant for the shift reaction

K0 proportionality factor, Eq. (54) [52], cm

l neck width, mm

lij circumference of necks formed between

particles i and j, mm

lTPB length of three-phase boundary, cm

L electrode thickness, mm or cm [Eq. (1)]

Mi molecular mass of species i, kg molÿ1

n number density of electrode particles, cmÿ3

Ni average ¯ux density of species i, mol cmÿ2 sÿ1

p number fraction of electrode particles

pk number fraction of particles of type k
p0 total pressure at x � L atm

pi partial pressure of species i, atm

ps
i partial pressure of species i at x � L, atm

pi
0 reference pressure of species i, atm

P total pressure, atm

Pc percolation strength, Eq. (62)

r pore radius, Eq. (1), cm, mm or m [Eq. (54)]

rI; rII reaction rates of reactions (6) and (7),

mol cmÿ2 sÿ1

R gas constant, 8:314 J Kÿ1 molÿ1, 82:056

cm3 atm Kÿ1molÿ1

Rp polarization resistance, O cm2

Ri net production of species i per volume,

mol cmÿ3 sÿ1

S/C steam-to-carbon ratio

t critical exponent

T temperature, K
U0 open-circuit potential, V
Vi potential at site i in composite, V
x coordinate normal to the anode plane, cm

xi mole fraction of species i
y dimensionless coordinate, x/L
yi mole fraciton of species i
Zt total average coordination number

Zi interfacial impedance, Fig. 3

Z dimensionless impedance

Zj total average coordination number for parti-

cles of type j
Zjk average number of k-neighbors of a particle of

type j
Zc

ii average number of i-neighbors of a particle of

type i at the percolation threshold for type-i
particles

a ael=aed

b bc=ba

ba; bc potential parameters, Eq. (12), Vÿ1

gi apparent reaction order for electrochemical

reaction with respect to species i
G ap= cos�tanÿ1�1=2pap��, Eq. (2)

d dimensionless current, Eq. (45)

D fraction of methane prereformed
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e porosity

Zs overpotential, V
k conductivity ratio, Eq. (45)

ki bulk conductivity of the particles of type i,
S cmÿ 1

k�i effective conductivity of percolating cluster of

i-particles in contact with a percolating cluster

of the opposite kind, S cmÿ 1

kp speci®c electrocatalytic activity, S cmÿ 1

lTPB effective three-phase boundary length per

volume, cmÿ 2

m dynamic viscosity og gas mixture, atm s
� square root of dimensionless exchange current

density, Eq. (26)

xi dimensionless partial pressure of species i
xi

s dimensionless partial pressure of species i at

x � L
pij dimensionless parameters, Eqs. (35) through

(44)

r resistivity of electrolyte layer, Eq. (1), O cm

rI dimensionless reforming reaction-rate,

d2x1=dy2

si conductance of a bond between two electrode

particles �i � ``ed''� or two electrolyte parti-

cles �i � ``el''� S

sij conductance of bond between particles i
and j S

sp polarization conductance for a bond between

an electrode particle and an electrolyte particle

S

t tortuosity

w ratio of the rate of the reforming reaction to I/
2F

ji potential in cluster of type i participating in an

interface between two percolating clusters, V
f baZs

F volume fraction of electrode particles

Fc critical volume fraction of electrode particles

o angular frequency (Fig. 3), Hz

Subscripts
ed electrode particle

el electrolyte particle
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